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ON SOME CLASSES OF HARMONIC FUNCTIONS
WITH CONDITIONS IMPOSED ON COEFFICIENTS

AND THEIR ARGUMENTS

Z. J. Jakubowski, A.  Lazińska

In this paper we consider a few classes of functions f harmonic
in the unit disc ∆ of the form f = h + g, where h, g are suitably
normalized functions holomorphic in ∆. Our special attention is
drawn to some classes generated by respective coefficient conditions
and to classes of functions with conditions imposed on coefficient
arguments. We examine relationships between these conditions and
some analytic conditions of stalikeness or convexity of considered
functions.

1. Let ∆ = {z ∈ C : |z| < 1}. We consider complex functions harmonic
in the disc ∆ of the form

f = h + g, h(z) = z +
∞∑

n=2

anzn, g(z) =
∞∑

n=1

bnzn, z ∈ ∆, |b1| < 1.

(1)
It is known ([1]) that functions f of the form (1) are locally univalent

and sense-preserving if and only if

|g′(z)| < |h′(z)|, z ∈ ∆. (2)

In 1984 J. Clunie and T. Sheil-Small ([2]) published their studies of
some geometric properties of univalent functions f of the form (1) that are
sense-preserving in ∆. In paper [2] the authors examined, among others,
convexity and close-to-convexity of such functions. They pointed to the
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fact that if a complex harmonic univalent and sense-preserving function of
the form (1) maps the disc ∆ onto a convex domain, then not all images
f(∆r), where ∆r = {z ∈ C : |z| < r}, r ∈ (0, 1), need to be convex. As an
example there was given the function f0 = h0 + g0 of the form

f0(z) = Re
z

1− z
+ i Im

z

(1− z)2
,

where

h0(z) =
z − 1

2z2

(1− z)2
, g0(z) = −

1
2z2

(1− z)2
, z ∈ ∆.

We have f0(∆) = {w ∈ C : Re w > − 1
2} and for every r ∈ (

√
2− 1, 1) the

set f0(∆r) is not convex ([2], Remark 5.6, see also [3], pp. 40-41, 46-48).
It is known that this situation is different from the case of holomorphic

univalent functions h, where h(∆) is convex if and only if for each r ∈ (0, 1)
the set h(∆r) is convex.

For holomorphic functions we know (see [4]) coefficient conditions,
which imply the univalence of functions and the starlikeness or convexity
of the image of ∆. In consequence, in this case the image of every disc ∆r,
r ∈ (0, 1), is starlike or convex, respectively.

In many papers we can find studies concerning influence of appropriate
coefficient conditions on geometric properties of complex harmonic functions
(e.g. [5], [6], [7], [8], [9], [10]). Various authors considered some classes of
functions of the form (1) where the signs of coefficients of h and g are fixed
(e.g. [11], [12]). We recall some results connected with these problems.

In 1990 Y. Avci and E. Z lotkiewicz proved the following theorems.

Theorem A ([5]). If a function f of the form (1) satisfies the condition

+∞∑
n=2

n (|an|+ |bn|) ≤ 1− |b1|, (3)

then f is univalent and sense-preserving in the disc ∆.

Theorem B ([5]). Let f be a function of the form (1) such that b1 = 0.
If

+∞∑
n=2

n (|an|+ |bn|) ≤ 1,
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then f(∆) is a domain starlike with respect to the point 0.

The result contained in Theorem B we can find also in paper [12]
published by H. Silverman in 1998. Moreover, H. Silverman considered
the case when for a function f of the form (1) we have

an ≤ 0, n = 2, 3, . . . , bn ≤ 0, n = 1, 2, . . . . (4)

Among others, he proved

Theorem C ([12]). Let f be a function of the form (1) such that the
inequalities (4) hold and b1 = 0. The function f is sense-preserving,
univalent and maps the disc ∆ onto a domain starlike with respect to
the point 0 if and only if it satisfies the condition (3).

In papers [7], [10] and [11] one can find a generalization of Theorems
B and C where the restriction b1 = 0 is omitted.

In the mentioned papers the conclusion that the set f(∆) is starlike
follows from the starlikeness of f(∆r) for every r ∈ (0, 1), i.e. from the
fact that if a function f of the form (1) satisfies the condition (3) then

∂

∂θ

(
arg f(reiθ)

)
=

reiθh′(reiθ)− reiθg′(reiθ)

h(reiθ) + g(reiθ)
≥ 0 (5)

for any θ ∈ 〈0, 2π), r ∈ (0, 1).
Inspirations for these results were the appropriate theorems concerning

functions holomorphic in the disc ∆. Among the oldest papers there should
be mentioned e.g. [4], [13], [14], [15], [16], [17], [18], [19].

2. Let VH denote the class of functions f of the form (1) such that
b1 ∈ 〈0, 1) and

an = −|an|e−i(n−1)ϕ , bn = |bn|e−i(n−1)ϕ, n = 2, 3, . . . , (6)

where ϕ ∈ 〈0, 2π), ϕ = ϕ(f).
In 2002 J. M. Jahangiri and H. Silverman ([20]) published some

consideration on starlike functions of the class VH . One of the main
theorems of this paper is given below.
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Theorem D ([20]). Let f ∈ VH . The function f is sense-preserving,
univalent in ∆ and maps each disc ∆r, r ∈ (0, 1), onto a starlike domain
if and only if the condition (3) holds.

We will prove a slightly more general theorem.

Theorem 1. If a function f of the form (1) belongs to the class VH and
satisfies the condition (2), i.e. is locally univalent and sense-preserving in
∆, then it satisfies the condition (3).

Proof. Let a function f of the form (1) belong to the class VH . Then
b1 ∈ 〈0, 1) and there exists ϕ ∈ 〈0, 2π) such that

h(z) = z −
+∞∑
n=2

|an|e−i(n−1)ϕzn = z − eiϕ
+∞∑
n=2

|an|
(
e−iϕz

)n
, z ∈ ∆,

g(z) = b1z +
+∞∑
n=2

|bn|e−i(n−1)ϕzn = b1z + eiϕ
+∞∑
n=2

|bn|
(
e−iϕz

)n
, z ∈ ∆.

Hence we obtain

h′(z) = 1−
+∞∑
n=2

n|an|e−i(n−1)ϕzn−1 = 1−
+∞∑
n=2

n|an|
(
e−iϕz

)n−1
, z ∈ ∆,

g′(z) = b1 +
+∞∑
n=2

n|bn|e−i(n−1)ϕzn−1 = b1 +
+∞∑
n=2

n|bn|
(
e−iϕz

)n−1
, z ∈ ∆.

Assume that the condition (2) holds, i.e. for each z ∈ ∆ we have
|h′(z)| > |g′(z)|, so∣∣∣∣∣1−

+∞∑
n=2

n|an|
(
e−iϕz

)n−1

∣∣∣∣∣ >
∣∣∣∣∣b1 +

+∞∑
n=2

n|bn|
(
e−iϕz

)n−1

∣∣∣∣∣ , z ∈ ∆.

In particular, setting z = reiϕ, where r ∈ (0, 1), we obtain∣∣∣∣∣1−
+∞∑
n=2

n|an|rn−1

∣∣∣∣∣ >
∣∣∣∣∣b1 +

+∞∑
n=2

n|bn|rn−1

∣∣∣∣∣ .
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The expressions in the modulus signs are real and the sum on the right-
hand side of the above inequality is nonnegative. Therefore∣∣∣∣∣1−

+∞∑
n=2

n|an|rn−1

∣∣∣∣∣ > b1 +
+∞∑
n=2

n|bn|rn−1 ≥ 0, r ∈ (0, 1).

From this fact and according to the continuity of power series we get either

(a) 1−
+∞∑
n=2

n|an|rn−1 < −b1 −
+∞∑
n=2

n|bn|rn−1, r ∈ (0, 1),

or

(b) 1−
+∞∑
n=2

n|an|rn−1 > b1 +
+∞∑
n=2

n|bn|rn−1, r ∈ (0, 1).

In the case (a) letting r → 0+ we obtain b1 < −1, which contradicts
the assumption that b1 ∈ 〈0, 1).

In the case (b) we have

+∞∑
n=2

n (|an|+ |bn|) rn−1 < 1− b1, r ∈ (0, 1).

Consequently, if r → 1−, then we get the condition (3), which completes
the proof. 2

If f ∈ VH satisfies the condition (3) then, according to Theorem A
and the Lewy’s result ([1]), it satisfies the condition (2). By Theorem 1
we have

Corolary 1. For functions f ∈ VH the conditions (2) and (3) are
equivalent.

Let H∗ denote the class of functions f of the form (1) satisfying the
condition (2), which are univalent in the disc ∆ and map ∆ onto domains
starlike with respect to the point 0.

From the presented facts we have the next corollary (see [20]).

Corolary 2. Let f ∈ VH . Then the following conditions are equivalent:
i) f satisfies the condition (2);



100 Z. J. Jakubowski, A.  Lazińska

ii) f satisfies the condition (3);
iii) f ∈ H∗.

The implication iii) ⇒ i) is a direct consequence of the definition of
the class H∗. The implication ii) ⇒ iii) follows from the mentioned results
contained in papers [5] and [10].

It is worth mentioning that if a function f of the form (1) belongs to
the class VH and its coefficients are real, then either an ≤ 0 and bn ≥ 0
for n = 2, 3, . . . (ϕ = 0) or an = (−1)n|an| and bn = (−1)n+1|bn| for n =
2, 3, . . . (ϕ = π) (see [10]). The class VH does not contain functions with
coefficient satisfying the inequalities (4).

3. We know the following properties of holomorphic functions.

Theorem E ([4]). If a holomorphic function h of the form

h(z) = z +
+∞∑
n=2

anzn , z ∈ ∆, (7)

satisfies the condition
+∞∑
n=2

n|an| ≤ 1, (8)

then
h(z)

z
6= 0,

∣∣∣∣zh′(z)
h(z)

− 1
∣∣∣∣ < 1 for z ∈ ∆. (9)

Corollary A ([4]). If a function h of the form (7) satisfies the condition
(8), then h is univalent and starlike in ∆. Moreover, we have

0 <
∂

∂θ

(
arg h(reiθ)

)
< 2 , θ ∈ 〈0, 2π), r ∈ (0, 1). (10)

We also have



On some classes of harmonic functions 101

Theorem F ([19]). If a function h is of the form

h(z) = z −
+∞∑
n=2

anzn , z ∈ ∆, an ≥ 0, n = 2, 3, . . . , (11)

and the conditions (9) hold, then we have (8).

Corollary B ([19]). A function h of the form (11) satisfies the condition
(8) if and only if it satisfies (9).

In [12] H. Silverman observed that these properties, especially (9),
cannot be directly extended to harmonic functions f = h + g of the form
(1) or respectively such that

h(z) = z −
+∞∑
n=2

anzn , g(z) = −
+∞∑
n=2

bnzn, an, bn ≥ 0, n = 2, 3, . . . .

An extention of (9) can be obtained on an additional assumption.
For a function f of the form (1) we put

f•(z) := zh′(z)− zg′(z) = z

(
1 +

+∞∑
n=2

nanzn−1

)
− z

(
b1 +

+∞∑
n=2

nbnzn−1

)
(12)

for z ∈ ∆.
It is clear that if Jf denotes the Jacobian of f , i.e. Jf = |h′|2 − |g′|2

for f = h + g, then the condition (2) is equivalent to the condition

Jf (z) > 0 , z ∈ ∆. (13)

By (12) we have |f•(z)| ≥ |z| (|h′(z)| − |g′(z)|), z ∈ ∆. We can observe
that if the condition (13) holds, then

|f•(z)| > 0, z ∈ ∆ \ {0}.

If f•(z0) = 0 for a z0 ∈ ∆ \ {0}, then by (12) we have z0h
′(z0) = z0g′(z0),

so
f•(z0) = 0 =⇒ Jf (z0) = 0, z0 ∈ ∆ \ {0}.

Let us note that the converse property does not hold.
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Set

f1 = h1 + g1, h1(z) =
z

1− z
, g1(z) = b1z, z ∈ ∆, |b1| < 1.

Then for z ∈ ∆ we have

Jf1(z) =
(

1
|1− z|2

+ |b1|
)(

1
|1− z|2

− |b1|
)

, f•1 (z) =
z

(1− z)2
− b1z.

If b1 ∈
(

1
4 , 1
)
, then there exists exactly one point zb1 ∈ ∆ such that

1
(1−zb1 )2 = b1, zb1 ∈ (−1, 0). Hence

Jf1(zb1) = 0 and f•1 (zb1) = 0.

If 1
4 < |b1| < 1, b1 6= b1, b1 ∈ D, where D = ω(∆), ω(z) = 1

(1−z)2 , z ∈ ∆,
then there exists also exactly one point zb1 6= zb1 such that 1

(1−zb1 )2 = b1.
Therefore

Jf1(zb1) = 0 and f•1 (zb1) 6= 0,

which follows from the fact that f•1 (zb1) = 2i Im(b1zb1) = 2i Im
(

zb1
(1−zb1 )2

)
.

Let f be a function of the form (1). As it has been known (e.g. [20],
[10]), if f(z) 6= 0 for z ∈ ∆ \ {0}, then from (5) and (12) we have

∂

∂θ

(
arg f(reiθ)

)
= Re

f•(reiθ)
f(reiθ)

, (14)

where

f•(reiθ)
f(reiθ)

=
1− b1e

−2iθ +
∑+∞

n=2

(
nanei(n−1)θ − nbne−i(n+1)θ

)
rn−1

1 + b1e−2iθ +
∑+∞

n=2

(
anei(n−1)θ + bne−i(n+1)θ

)
rn−1

,

(15)
θ ∈ 〈0, 2π), r ∈ (0, 1).

Theorem 2. If a function f of the form (1) satisfies the condition

+∞∑
n=1

(n|an|+ (n + 2)|bn|) ≤ 2, a1 = 1, (16)
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then it satisfies the condition (3) and∣∣∣∣f•(z)
f(z)

− 1
∣∣∣∣ < 1 , z ∈ ∆ \ {0}. (17)

Proof. Let f be a function of the form (1) satisfying the condition (16).
Obviously, then the condition (3) holds and therefore

+∞∑
n=1

(|an|+ |bn|) ≤ 2, a1 = 1,

Consequently, for z ∈ ∆ \ {0} we have

|f•(z)| ≥ |z|

(
1−

+∞∑
n=2

n|an||z|n−1 − |b1| −
+∞∑
n=2

n|bn||z|n−1

)
> 0 ,

|f(z)| ≥ |z|

(
1−

+∞∑
n=2

|an||z|n−1 − |b1| −
+∞∑
n=2

|bn||z|n−1

)
> 0 .

Hence
f•(z)f(z) 6= 0 for z ∈ ∆ \ {0}. (18)

According to (16), for z = reiθ, r ∈ (0, 1), θ ∈ 〈0, 2π), we obtain

|f(z)| − |f•(z)− f(z)| =
= r

∣∣∣1 + b1e
−2iθ +

∑+∞
n=2

(
anei(n−1)θ + bne−i(n+1)θ

)
rn−1

∣∣∣+
−r
∣∣∣−2b1e

−2iθ +
∑+∞

n=2

(
(n− 1)anei(n−1)θ − (n + 1)bne−i(n+1)θ

)
rn−1

∣∣∣ ≥
≥ r

(
1− |b1| −

∑+∞
n=2 (|an|+ |bn|) rn−1

)
+

−r
(

2|b1|+
∑+∞

n=2 ((n− 1)|an|+ (n + 1)|bn|) rn−1
)

=

= r
(

1− 3|b1| −
∑+∞

n=2 (n|an|+ (n + 2)|bn|) rn−1
)

> 0.

Thus, by (15) and (18), we get (17). 2

By (14) and from Theorem 2 we have

Corolary 3. If a function f of the form (1) satisfies the condition (16),
then

0 <
∂

∂θ

(
arg f(reiθ)

)
< 2 , r ∈ (0, 1), θ ∈ 〈0, 2π). (19)
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In paper [12] H. Silverman gave an example of a function f of the form
(1) such that the condition (3) holds for it, but the condition (19) is not
satisfied (f2(z) = z − 1

2z2, z ∈ ∆).
Let us consider the function f3(z; b) = z + bzn, z ∈ ∆, b ∈ R, n ∈

{2, 3, . . .}. If |b| ≤ 1
n , then the condition (3) holds, so f3 is univalent and

sense-preserving and for each r ∈ (0, 1) the set f3(∆r; b) is starlike with
respect to the origin. From (12) we obtain

∣∣∣ f•3 (z;b)
f3(z;b) − 1

∣∣∣ =
∣∣∣−(n+1)bzn

z+bzn

∣∣∣,
z ∈ ∆ \ {0}, and after some computations we conclude that the condition
(17) holds only if |b| ≤ 1

n+2 . Thus we get

Corolary 4. The function f3(·; b) satisfies the conditions (16) and (17)
if and only if |b| ≤ 1

n+2 .

It is evident that the mentioned function f2 does not satisfy this
assumption.

Next we consider the function f4(·; q) of the form

f4(z; q) = z +
+∞∑
n=1

qnzn = z +
qz

1− qz
, z ∈ ∆, |q| < 1.

For |q| < 5−
√

13
6 we get

+∞∑
n=2

n|an|+
+∞∑
n=1

(n + 2)|bn| =
+∞∑
n=1

(n + 2)|q|n =
3|q| − 2|q|2

(1− |q|)2
≤ 1,

so then the condition (16) is fulfilled. In consequence, by Theorem 2 and
Corollary 3 the conditions (3), (17) and (19) hold.

Now we turn our attention to the function f5 of the form (1) with
an = 0, n = 2, 3, . . ., bn = −βn, βn ≥ 0, n = 1, 2, . . ., β1 < 1, i.e.

f5(z) = z −
+∞∑
n=1

βnzn , z ∈ ∆, βn ≥ 0, n = 1, 2, . . . , β1 < 1. (20)

Assume that the function f5 of the form (20) satisfies the condition
(17). Note that such functions exist (e.g. f̃5(z) = z − β1z, z ∈ ∆, 0 ≤
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β1 < 1
3 ). Consequently, the function f5 satisfies the condition (18). Then

we have
f5(r)

r
= 1− β1 −

+∞∑
n=2

βnrn−1 , r ∈ (0, 1).

Observe that limr→0+
f5(r)

r = 1−β1 > 0. By the continuity of f5 and from
(18) we conclude that

f5(r) > 0, r ∈ (0, 1). (21)

According to (17) we have

|f5(r)| − |f•5 (r)− f5(r)| > 0 , r ∈ (0, 1).

Hence, by (12), (20) and (21), we obtain

1− β1 −
+∞∑
n=2

βnrn−1 > 2β1 +
+∞∑
n=2

(n + 1)βnrn−1 , r ∈ (0, 1),

and thus

3β1 +
+∞∑
n=2

(n + 2)βnrn−1 < 1 , r ∈ (0, 1),

Letting r → 1− we get
+∞∑
n=1

(n + 2)βn ≤ 1.

Therefore, by Theorem 2, we have

Corolary 5. The function f5 of the form (20) satisfies the condition
(17) if and only if (16) holds for it.

Let VH0 denote the subclass of VH such that in (6) we have ϕ = 0, i.e.
the class of functions of the form

f(z) = z −
+∞∑
n=2

αnzn +
+∞∑
n=1

bnzn, z ∈ ∆, b1 ∈ 〈0, 1), (22)

where αn, bn ≥ 0, n = 2, 3, . . ..
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Theorem 3. If a function f ∈ VH0 satisfies the condition (17), then the
condition (3) is fulfilled.

Proof. Let f ∈ VH0 be of the form (22) and satisfy (17). Then we have
(18) for it. Proceeding similar to that for the function f5 gives

1 + b1 +
+∞∑
n=2

(bn − αn)rn−1 >

∣∣∣∣∣−2b1 −
+∞∑
n=2

((n− 1)αn + (n + 1)bn) rn−1

∣∣∣∣∣ ,

so

1 + b1 +
+∞∑
n=2

(bn − αn)rn−1 > 2b1 +
+∞∑
n=2

((n− 1)αn + (n + 1)bn) rn−1

for r ∈ (0, 1). Therefore

+∞∑
n=2

n(αn + bn)rn−1 < 1− b1 , r ∈ (0, 1).

From this, letting r → 1−, we obtain (3), which completes the proof. 2

Remark 1. It is easily seen that for holomorphic functions h of the
form (7) the conditions (3) and (16) reduce to (8) and the condition
(17) coincides with (9). Of course, the function z 7→ h(z)

z , z ∈ ∆, has
removeable singularity at the point 0, and so (9) may be considered in the
whole disc ∆.

4. In this section we make some remarks on convex harmonic functions.
The following lemma is known.

Lemma A ([3], p. 108). If f = h + g of the form (1) is univalent, sense-
preserving starlike in ∆, and if H and G are holomorphic functions defined
by

zH ′(z) = h(z), zG′(z) = −g(z), H(0) = G(0) = 0, (23)

then F = H + G is an univalent, sense-preserving function convex in ∆.

However, the converse to Lemma A is false ([3], p. 110). We know that
the convexity of a harmonic function F follows from the condition (see
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[5], [10], [12])
+∞∑
n=2

n2 (|cn|+ |dn|) ≤ 1− |d1|, (24)

where

F = H +G, H(z) = z+
∞∑

n=2

cnzn, G(z) =
∞∑

n=1

dnzn, z ∈ ∆, |d1| < 1.

(25)
If f = h + g is of the form (1) and H, G are such that we have (23),

then
ncn = an, ndn = −bn, n = 1, 2, . . . . (26)

If F of the form (25) satisfies the condition (24), then by (26) we obtain
the condition (3) for the function f , and conversely.

From the mentioned facts we obtain

Theorem 4. If a function F of the form (25) satisfies the condition (24),
then ∣∣∣(zH ′(z))′

∣∣∣ > ∣∣∣(zG′(z))′
∣∣∣ , z ∈ ∆. (27)

Proof. Let F = H + G be of the form (25) and let it satisfy (24).
Consider the function f = h + g such that the equalities (23) hold. Then
by (26) f satisfies (3). From Theorems A, C we conclude that Jf (z) > 0,
z ∈ ∆, which gives∣∣∣(zH ′(z))′

∣∣∣ > ∣∣∣− (zG′(z))′
∣∣∣ , z ∈ ∆,

i.e. the condition (27). 2

Moreover, we know the following theorem.

Theorem G ([5], [10], [12]). If a function F of the form (25) satisfies
the condition (24), then F (∆r) is convex for each r ∈ (0, 1).

Consequently, according to Theorems C and G and Lemma A, for
harmonic functions satisfying the condition (3) or (24), respectively, we
have the "full"Alexander theorem.

Let us return to the class VH .
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Theorem 5. If a function F of the form (25) belongs to the class VH

and satisfies the condition (27), then it satisfies (24).

Proof. From (6) and (25) for a function F ∈ VH we have

(zH ′(z))′ = 1−
+∞∑
n=2

n2|cn|
(
e−iϕz

)n−1
, z ∈ ∆,

(zG′(z))′ = |d1|+
+∞∑
n=2

n2|dn|
(
e−iϕz

)n−1
, z ∈ ∆,

so by (27) we get∣∣∣∣∣1−
+∞∑
n=2

n2|cn|rn−1

∣∣∣∣∣ > |d1|+
+∞∑
n=2

n2|dn|rn−1, r ∈ (0, 1).

Hence we obtain (24). 2

Consequently, by Theorems 4 and 5, we have

Corolary 6. For a function F ∈ VH the conditions (24) and (27) are
equivalent.

Observe that functions f , F of the forms (1), (25), respectively, such
that the equalities (26) hold, cannot belong to VH simultaneously (see
(6)), except for the holomorphic case (i.e. bn = dn = 0, n = 1, 2, . . .).

Let Hc denotes the class of functions F of the form (25) univalent,
sense-preserving in ∆ and mapping ∆ onto convex domains.

According to Theorem 5, Theorem G and Corollary 6, we obtain

Corolary 7. If a function F of the form (25) belongs to the class VH

and satisfies the condition (27), then F ∈ Hc.

For a function F of the form (25) we denote

F ••(z) := z (zH ′(z))′ + z (zG′(z))′ , z ∈ ∆. (28)

On account of (12) and (28), it is clear that F •• = (F •)•.
From Theorem 2 we obtain
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Theorem 6. If a function F of the form (25) satisfies the condition

+∞∑
n=1

n (n|cn|+ (n + 2)|dn|) ≤ 2, c1 = 1, (29)

then ∣∣∣∣F ••(z)
F •(z)

− 1
∣∣∣∣ < 1 , z ∈ ∆ \ {0}. (30)

In consequance, we have

∂

∂θ

(
arg

(
∂

∂θ
F (reiθ)

))
∈ (0, 2), r ∈ (0, 1), θ ∈ 〈0, 2π). (31)

The last statement follows from the fact (see e.g. [11]) that

∂

∂θ

(
arg

(
∂

∂θ
F (reiθ)

))
= Re

F ••(reiθ)
F •(reiθ)

, r ∈ (0, 1), θ ∈ 〈0, 2π).

Obviously, the condition (29) implies (16).

The function f3(z; b) = z + bzn, z ∈ ∆, n ∈ {2, 3, . . .}, for |b| ≤ 1
n(n+2)

satisfies the condition (29), and so (30) and (31), as well. If b = 1
4 , n = 2,

then this function does not satisfy the condition (29).

Some other properties of the operators (12), (28) and their generalizations
were considered e.g. in [21], [22].
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